Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
Comput Biol Med ; 150: 106181, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2104647

RESUMO

Aiming at the problem that the single CT image signal feature recognition method in the self-diagnosis of diseases cannot accurately and reliably classify COVID-19, and it is easily confused with suspected cases. The collected CT signals and experimental indexes are extracted to construct different feature vectors. The support vector machine is optimized by the improved whale algorithm for the preliminary diagnosis of COVID-19, and the basic probability distribution function of each evidence is calculated by the posterior probability modeling method. Then the similarity measure is introduced to optimize the basic probability distribution function. Finally, the multi-domain feature fusion prediction model is established by using the weighted D-S evidence theory. The experimental results show that the fusion of multi-domain feature information by whale optimized support vector machine and improved D-S evidence theory can effectively improve the accuracy and the precision of COVID-19 autonomous diagnosis. The method of replacing a single feature parameter with multi-modal indicators (CT, routine laboratory indexes, serum cytokines and chemokines) provides a more reliable signal source for the diagnosis model, which can effectively distinguish COVID-19 from the suspected cases.

2.
Computers in biology and medicine ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2046987

RESUMO

Aiming at the problem that the single CT image signal feature recognition method in the self-diagnosis of diseases cannot accurately and reliably classify COVID-19, and it is easily confused with suspected cases. The collected CT signals and experimental indexes are extracted to construct different feature vectors. The support vector machine is optimized by the improved whale algorithm for the preliminary diagnosis of COVID-19, and the basic probability distribution function of each evidence is calculated by the posterior probability modeling method. Then the similarity measure is introduced to optimize the basic probability distribution function. Finally, the multi-domain feature fusion prediction model is established by using the weighted D-S evidence theory. The experimental results show that the fusion of multi-domain feature information by whale optimized support vector machine and improved D-S evidence theory can effectively improve the accuracy and the precision of COVID-19 autonomous diagnosis. The method of replacing a single feature parameter with multi-modal indicators (CT, routine laboratory indexes, serum cytokines and chemokines) provides a more reliable signal source for the diagnosis model, which can effectively distinguish COVID-19 from the suspected cases.

3.
Biomed Signal Process Control ; 79: 104159, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-2031172

RESUMO

Accurate segmentation of ground-glass opacity (GGO) is an important premise for doctors to judge COVID-19. Aiming at the problem of mis-segmentation for GGO segmentation methods, especially the problem of adhesive GGO connected with chest wall or blood vessel, this paper proposes an accurate segmentation of GGO based on fuzzy c-means (FCM) clustering and improved random walk algorithm. The innovation of this paper is to construct a Markov random field (MRF) with adaptive spatial information by using the spatial gravity Model and the spatial structural characteristics, which is introduced into the FCM model to automatically balance the insensitivity to noise and preserve the effectiveness of image edge details to improve the clustering accuracy of image. Then, the coordinate values of nodes and seed points in the image are combined with the spatial distance, and the geodesic distance is added to redefine the weight. According to the edge density of the image, the weight of the grayscale and the spatial feature in the weight function is adaptively calculated. In order to reduce the influence of edge noise on GGO segmentation, an adaptive snowfall model is proposed to preprocess the image, which can suppress the noise without losing the edge information. In this paper, CT images of different types of COVID-19 are selected for segmentation experiments, and the experimental results are compared with the traditional segmentation methods and several SOTA methods. The results suggest that the paper method can be used for the auxiliary diagnosis of COVID-19, so as to improve the work efficiency of doctors.

4.
Biomed Signal Process Control ; 78: 103933, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1906823

RESUMO

The lesions of COVID-19 CT image show various kinds of ground-glass opacity and consolidation, which are distributed in left lung, right lung or both lungs. The lung lobes are uneven and it have similar gray value to the surrounding arteries, veins, and bronchi. The lesions of COVID-19 have different sizes and shapes in different periods. Accurate segmentation of lung parenchyma in CT image is a key step in COVID-19 detection and diagnosis. Aiming at the unideal effect of traditional image segmentation methods on lung parenchyma segmentation in CT images, a lung parenchyma segmentation method based on two-dimensional reciprocal cross entropy multi-threshold combined with improved firefly algorithm is proposed. Firstly, the optimal threshold method is used to realize the initial segmentation of the lung, so that the segmentation threshold can change adaptively according to the detailed information of lung lobes, trachea, bronchi and ground-glass opacity. Then the lung parenchyma is further processed to obtain the lung parenchyma template, and then the defective template is repaired combined with the improved Freeman chain code and Bezier curve. Finally, the lung parenchyma is extracted by multiplying the template with the lung CT image. The accuracy of lung parenchyma segmentation has been improved in the contrast clarity of CT image and the consistency of lung parenchyma regional features, with an average segmentation accuracy rate of 97.4%. The experimental results show that for COVID-19 and suspected cases, the method has an ideal segmentation effect, and it has good accuracy and robustness.

5.
Biomed Signal Process Control ; 76: 103707, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1797110

RESUMO

The quality of asymptomatic corona virus disease 2019 (COVID-19) computed tomography (CT) image is reduced due to interference from Gaussian noise, which affects the subsequent image processing. Aiming at the problem that asymptomatic COVID-19 CT image often have small flake ground-glass shadow in the early lesions, and the density is low, which is easily confused with noise. A denoising method of wavelet transform with shrinkage factor is proposed. The threshold decreases with the increase of decomposition scale, and it reduces the misjudgment of signal points. In the advanced stage, the range of lesions increases, with consolidation and fibrosis in different sizes, which have similar gray value to the CT images of suspected cases. Aiming at the problems of low contrast and fuzzy boundary in the traditional wavelet transform, the threshold function based on the optimization of parameters combined with the improved particle swam optimization (PSO) is proposed, so that the parameters of wavelet threshold function can change adaptively according to the lung lobe and ground-glass lesions with fewer iterations. The simulation results show that the paper method is significantly better than other algorithms in peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR) and mean absolute error (MSE). For example, aiming at the early asymptomatic COVID-19, compared with the comparison methods, the PSNR under the proposed method has increased by about 5 dB, the MSE has been greatly reduced, and the SNR has increased by about 6.1 dB. It can be seen that the denoising effect under the proposed method is the best.

6.
Biomed Signal Process Control ; 75: 103552, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1682950

RESUMO

CT image of COVID-19 is disturbed by impulse noise during transmission and acquisition. Aiming at the problem that the early lesions of COVID-19 are not obvious and the density is low, which is easy to confuse with noise. A median filtering algorithm based on adaptive two-stage threshold is proposed to improve the accuracy for noise detection. In the advanced stage of ground-glass lesion, the density is uneven and the boundary is unclear. It has similar gray value to the CT images of suspected COVID-19 cases such as adenovirus pneumonia and mycoplasma pneumonia (reticular shadow and strip shadow). Aiming at the problem that the traditional weighted median filter has low contrast and fuzzy boundary, an adaptive weighted median filter image denoising method based on hybrid genetic algorithm is proposed. The weighted denoising parameters can adaptively change according to the detailed information of lung lobes and ground-glass lesions, and it can adaptively match the cross and mutation probability of genetic combined with the steady-state regional population density, so as to obtain a more accurate COVID-19 denoised image with relatively few iterations. The simulation results show that the improved algorithm under different density of impulse noise is significantly better than other algorithms in peak signal-to-noise ratio (PSNR), image enhancement factor (IEF) and mean absolute error (MSE). While protecting the details of lesions, it enhances the ability of image denoising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA